Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 8, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635667

RESUMO

BACKGROUND: Regulatory T cells (Treg) in diverse species include CD4+ and CD8+ T cells. In all species, CD8+ Treg have been only partially characterized and there is no rat model in which CD4+ and CD8+ FOXP3+ Treg are genetically tagged. RESULTS: We generated a Foxp3-EGFP rat transgenic line in which FOXP3 gene was expressed and controlled EGFP. CD4+ and CD8+ T cells were the only cells that expressed EGFP, in similar proportion as observed with anti-FOXP3 antibodies and co-labeled in the same cells. CD4+EGFP+ Treg were 5-10 times more frequent than CD8+EGFP+ Treg. The suppressive activity of CD4+ and CD8+ Treg was largely confined to EGFP+ cells. RNAseq analyses showed similarities but also differences among CD4+ and CD8+ EGFP+ cells and provided the first description of the natural FOXP3+CD8+ Treg transcriptome. In vitro culture of CD4+ and CD8+ EGFP- cells with TGFbeta and IL-2 generated induced EGFP+ Treg. CD4+ and CD8+ EGFP+ Treg were expanded upon in vivo administration of a low dose of IL-2. CONCLUSIONS: This new and unique rat line constitutes a useful model to identify and isolate viable CD4+ and CD8+ FOXP3+ Treg. Additionally, it allows to identify molecules expressed in CD8+ Treg that may allow to better define their phenotype and function not only in rats but also in other species.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos T Reguladores , Ratos , Animais , Linfócitos T Reguladores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
2.
Clin Transl Med ; 12(8): e988, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36030499

RESUMO

BACKGROUND: Immune homeostasis requires fully functional Tregs with a stable phenotype to control autoimmunity. Although IL-34 is a cytokine first described as mainly involved in monocyte cell survival and differentiation, we recently described its expression by CD8+ Tregs in a rat model of transplantation tolerance and by activated FOXP3+ CD4+ and CD8+ Tregs in human healthy individuals. However, its role in autoimmunity and potential in human diseases remains to be determined. METHODS: We generated Il34-/- rats and using both Il34-/- rats and mice, we investigated their phenotype under inflammatory conditions. Using Il34-/- rats, we further analyzed the impact of the absence of expression of IL-34 for CD4+ Tregs suppressive function. We investigated the potential of IL-34 in human disease to prevent xenogeneic GVHD and human skin allograft rejection in immune humanized immunodeficient NSG mice. Finally, taking advantage of a biocollection, we investigated the correlation between presence of IL-34 in the serum and kidney transplant rejection. RESULTS: Here we report that the absence of expression of IL-34 in Il34-/- rats and mice leads to an unstable immune phenotype, with production of multiple auto-antibodies, exacerbated under inflammatory conditions with increased susceptibility to DSS- and TNBS-colitis in Il34-/- animals. Moreover, we revealed the striking inability of Il34-/- CD4+ Tregs to protect Il2rg-/- rats from a wasting disease induced by transfer of pathogenic cells, in contrast to Il34+/+ CD4+ Tregs. We also showed that IL-34 treatment delayed EAE in mice as well as GVHD and human skin allograft rejection in immune humanized immunodeficient NSG mice. Finally, we show that presence of IL-34 in the serum is associated with a longer rejection-free period in kidney transplanted patients. CONCLUSION: Altogether, our data emphasize on the crucial necessity of IL-34 for immune homeostasis and for CD4+ Tregs suppressive function. Our data also shows the therapeutic potential of IL-34 in human transplantation and auto-immunity. HIGHLIGHTS: -Absence of expression of IL-34 in Il34-/- rats and mice leads to an unstable immune phenotype, with a production of multiple auto-antibodies and exacerbated immune pathology under inflammatory conditions. -Il34-/- CD4+ Tregs are unable to protect Il2rg-/- rats from colitis induced by transfer of pathogenic cells. -IL-34 treatment delayed EAE in mice, as well as acute GVHD and human skin allograft rejection in immune-humanized immunodeficient NSG mice.


Assuntos
Colite , Doença Enxerto-Hospedeiro , Interleucinas , Linfócitos T Reguladores , Animais , Colite/imunologia , Fatores de Transcrição Forkhead , Doença Enxerto-Hospedeiro/imunologia , Homeostase , Humanos , Tolerância Imunológica , Interleucinas/deficiência , Interleucinas/genética , Camundongos , Ratos , Linfócitos T Reguladores/imunologia
3.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35167497

RESUMO

Targeted monoclonal antibody (mAb) therapies show great promise for the treatment of transplant rejection and autoimmune diseases by inducing more specific immunomodulatory effects than broadly immunosuppressive drugs routinely used. We recently described the therapeutic advantage of targeting CD45RC, expressed at high levels by conventional T (Tconv) cells (CD45RChi), their precursors, and terminally differentiated T (TEMRA) cells, but not by regulatory T cells (Tregs; CD45RClo/-). We demonstrated efficacy of anti-CD45RC mAb treatment in transplantation, but its potential has not been examined in autoimmune diseases. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare genetic syndrome caused by loss-of-function mutations of autoimmune regulator (AIRE), a key central tolerance mediator, leading to abnormal autoreactive T cell responses and autoantibody production. Herein, we show that, in a rat model of APECED syndrome, anti-CD45RC mAb was effective for both prevention and treatment of autoimmune manifestations and inhibited autoantibody development. Anti-CD45RC mAb intervention depleted CD45RChi T cells, inhibited CD45RChi B cells, and restored the Treg/Tconv cell ratio and the altered Treg transcriptomic profile. In APECED patients, CD45RC was significantly increased in peripheral blood T cells, and lesioned organs from APECED patients were infiltrated by CD45RChi cells. Our observations highlight the potential role for CD45RChi cells in the pathogenesis of experimental and human APECED syndrome and the potential of anti-CD45RC antibody treatment.


Assuntos
Doenças Autoimunes , Poliendocrinopatias Autoimunes , Animais , Autoanticorpos , Humanos , Imunoterapia , Poliendocrinopatias Autoimunes/genética , Poliendocrinopatias Autoimunes/terapia , Ratos , Linfócitos T Reguladores
4.
Transplantation ; 104(4): 715-723, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31764762

RESUMO

BACKGROUND: Humanized immune system immunodeficient mice have been extremely useful for the in vivo analyses of immune responses in a variety of models, including organ transplantation and graft versus host disease (GVHD) but they have limitations. Rat models are interesting complementary alternatives presenting advantages over mice, such as their size and their active complement compartment. Immunodeficient rats have been generated but human immune responses have not yet been described. METHODS: We generated immunodeficient Rat Rag-/- Gamma chain-/- human signal regulatory protein alpha-positive (RRGS) rats combining Rag1 and Il2rg deficiency with the expression of human signal regulatory protein alpha, a negative regulator of macrophage phagocytosis allowing repression of rat macrophages by human CD47-positive cells. We then immune humanized RRGS animals with human peripheral blood mononuclear cells (hPBMCs) to set up a human acute GVHD model. Treatment of GVHD was done with a new porcine antihuman lymphocyte serum active through complement-dependent cytotoxicity. We also established a tumor xenograft rejection model in these hPBMCs immune system RRGS animals by subcutaneous implantation of a human tumor cell line. RESULTS: RRGS animals receiving hPBMCs showed robust and reproducible reconstitution, mainly by T and B cells. A dose-dependent acute GVHD process was observed with progressive weight loss, tissue damage, and death censoring. Antihuman lymphocyte serum (L1S1) antibody completely prevented acute GVHD. In the human tumor xenograft model, detectable tumors were rejected upon hPBMCs injection. CONCLUSIONS: hPBMC can be implanted in RRGS animals and elicit acute GVHD or rejection of human tumor cells and these are useful models to test new immunotherapies.


Assuntos
Antígenos de Diferenciação/imunologia , Proteínas de Homeodomínio/imunologia , Hospedeiro Imunocomprometido , Cadeias gama de Imunoglobulina/imunologia , Síndromes de Imunodeficiência/imunologia , Leucócitos Mononucleares/transplante , Receptores Imunológicos/imunologia , Animais , Antígenos de Diferenciação/genética , Soro Antilinfocitário/farmacologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Xenoenxertos , Proteínas de Homeodomínio/genética , Humanos , Cadeias gama de Imunoglobulina/genética , Síndromes de Imunodeficiência/genética , Leucócitos Mononucleares/imunologia , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores Imunológicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Rep ; 29(13): 4245-4255.e6, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875536

RESUMO

To reduce the use of non-specific immunosuppressive drugs detrimental to transplant patient health, therapies in development aim to achieve antigen-specific tolerance by promoting antigen-specific regulatory T cells (Tregs). However, identification of the natural antigens recognized by Tregs and the contribution of their dominance in transplantation has been challenging. We identify epitopes derived from distinct major histocompatibility complex (MHC) class II molecules, sharing a 7-amino acid consensus sequence positioned in a central mobile section in complex with MHC class I, recognized by cross-reactive CD8+ Tregs, enriched in the graft. Antigen-specific CD8+ Tregs can be induced in vivo with a 16-amino acid-long peptide to trigger transplant tolerance. Peptides derived from human HLA class II molecules, harboring the rat consensus sequence, also activate and expand human CD8+ Tregs, suggesting its potential in human transplantation. Altogether, this work should facilitate the development of therapies with peptide epitopes for transplantation and improve our understanding of CD8+ Treg recognition.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas/imunologia , Rejeição de Enxerto/imunologia , Linfócitos T Reguladores/imunologia , Doadores de Tecidos , Aloenxertos/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Consenso , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Antígenos Comuns de Leucócito/metabolismo , Ativação Linfocitária/imunologia , Peptídeos/química , Peptídeos/imunologia , Ratos , Vacinação
6.
Am J Transplant ; 19(12): 3263-3275, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31207067

RESUMO

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature hematopoietic precursors known to suppress immune responses. Interaction of SIRP alpha (SIRPα), expressed by myeloid cells, with the ubiquitous receptor CD47 is an important immune checkpoint of the innate response regulating macrophages and dendritic cells functions. We previously described that MDSC expressing SIRPα accumulated after transplantation and maintained kidney allograft tolerance. However, the role of the SIRPα/CD47 axis on MDSC function remained unknown. Here, we found that blocking SIRPα or CD47 with monoclonal antibodies (mAbs) induced differentiation of MDSC into myeloid cells overexpressing MHC class II, CD86 costimulatory molecule and increased secretion of macrophage-recruiting chemokines (eg, MCP-1). Using a model of long-term kidney allograft tolerance sustained by MDSC, we observed that administration of blocking anti-SIRPα or CD47 mAbs induced graft dysfunction and rejection. Loss of tolerance came along with significant decrease of MDSC and increase in MCP-1 concentration in the periphery. Graft histological and transcriptomic analyses revealed an inflammatory (M1) macrophagic signature at rejection associated with overexpression of MCP-1 mRNA and protein in the graft. These findings indicate that the SIRPα-CD47 axis regulates the immature phenotype and chemokine secretion of MDSC and contributes to the induction and the active maintenance of peripheral acquired immune tolerance.


Assuntos
Antígeno CD47/metabolismo , Rejeição de Enxerto/imunologia , Transplante de Rim/efeitos adversos , Células Mieloides/imunologia , Células Supressoras Mieloides/imunologia , Receptores Imunológicos/metabolismo , Tolerância ao Transplante/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/imunologia , Quimiocinas , Rejeição de Enxerto/patologia , Sobrevivência de Enxerto/imunologia , Células Mieloides/citologia , Ratos , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/imunologia
7.
Animal Model Exp Med ; 2(4): 297-311, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31942562

RESUMO

BACKGROUND: Genetically engineered animals are essential for gaining a proper understanding of the disease mechanisms of cystic fibrosis (CF). The rat is a relevant laboratory model for CF because of its zootechnical capacity, size, and airway characteristics, including the presence of submucosal glands. METHODS: We describe the generation of a CF rat model (F508del) homozygous for the p.Phe508del mutation in the transmembrane conductance regulator (Cftr) gene. This model was compared to new Cftr -/- rats (CFTR KO). Target organs in CF were examined by histological staining of tissue sections and tooth enamel was quantified by micro-computed tomography. The activity of CFTR was evaluated by nasal potential difference (NPD) and short-circuit current measurements. The effect of VX-809 and VX-770 was analyzed on nasal epithelial primary cell cultures from F508del rats. RESULTS: Both newborn F508del and Knock out (KO) animals developed intestinal obstruction that could be partly compensated by special diet combined with an osmotic laxative. The two rat models exhibited CF phenotypic anomalies such as vas deferens agenesis and tooth enamel defects. Histology of the intestine, pancreas, liver, and lungs was normal. Absence of CFTR function in KO rats was confirmed ex vivo by short-circuit current measurements on colon mucosae and in vivo by NPD, whereas residual CFTR activity was observed in F508del rats. Exposure of F508del CFTR nasal primary cultures to a combination of VX-809 and VX-770 improved CFTR-mediated Cl- transport. CONCLUSIONS: The F508del rats reproduce the phenotypes observed in CFTR KO animals and represent a novel resource to advance the development of CF therapeutics.

8.
Transplantation ; 102(8): 1271-1278, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29688994

RESUMO

BACKGROUND: Immunodeficient mice are invaluable tools to analyze the long-term effects of potentially immunogenic molecules in the absence of adaptive immune responses. Nevertheless, there are models and experimental situations that would beneficiate of larger immunodeficient recipients. Rats are ideally suited to perform experiments in which larger size is needed and are still a small animal model suitable for rodent facilities. Additionally, rats reproduce certain human diseases better than mice, such as ankylosing spondylitis and Duchenne disease, and these disease models would greatly benefit from immunodeficient rats to test different immunogenic treatments. METHODS: We describe the generation of Il2rg-deficient rats and their crossing with previously described Rag1-deficient rats to generate double-mutant RRG animals. RESULTS: As compared with Rag1-deficient rats, Il2rg-deficient rats were more immunodeficient because they partially lacked not only T and B cells but also NK cells. RRG animals showed a more profound immunossuppressed phenotype because they displayed undetectable levels of T, B, and NK cells. Similarly, all immunoglobulin isotypes in sera were decreased in Rag1- or Il2rg-deficient rats and undetectable in Rats Rag1 and Il2rg (RRG) animals. Rag1- or Il2rg-deficient rats rejected allogeneic skin transplants and human tumors, whereas animals not only accepted allogeneic rat skin but also xenogeneic human tumors, skin, and hepatocytes. Immune humanization of RRG animals was unsuccessful. CONCLUSIONS: Thus, immunodeficient RRG animals are useful recipients for long-term studies in which immune responses could be an obstacle, including tissue humanization of different tissues.


Assuntos
Deleção de Genes , Proteínas de Homeodomínio/genética , Subunidade gama Comum de Receptores de Interleucina/genética , Animais , Animais Geneticamente Modificados , Cruzamentos Genéticos , Modelos Animais de Doenças , Éxons , Feminino , Genótipo , Hepatócitos/citologia , Humanos , Sistema Imunitário , Fígado/imunologia , Masculino , Mutação , Ratos , Ratos Sprague-Dawley , Transplante de Pele , Transplante Heterólogo , Transplantes
9.
Sci Rep ; 7(1): 16554, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29185448

RESUMO

The generation of gene-edited animals using the CRISPRs/Cas9 system is based on microinjection into zygotes which is inefficient, time consuming and demands high technical skills. We report the optimization of an electroporation method for intact rat zygotes using sgRNAs and Cas9 protein in combination or not with ssODNs (~100 nt). This resulted in high frequency of knockouts, between 15 and 50% of analyzed animals. Importantly, using ssODNs as donor template resulted in precise knock-in mutations in 25-100% of analyzed animals, comparable to microinjection. Electroporation of long ssDNA or dsDNA donors successfully used in microinjection in the past did not allow generation of genome-edited animals despite dsDNA visualization within zygotes. Thus, simultaneous electroporation of a large number of intact rat zygotes is a rapid, simple, and efficient method for the generation of a variety of genome-edited rats.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Zigoto/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Eletroporação/métodos , Feminino , Genótipo , Microscopia Confocal , Mutação , Ratos
10.
Transgenic Res ; 26(5): 703-708, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28780744

RESUMO

On May 11th and 12th 2017 was held in Nantes, France, the international meeting "Advances in transgenic animal models and techniques" ( http://www.trm.univ-nantes.fr/ ). This biennial meeting is the fifth one of its kind to be organized by the Transgenic Rats ImmunoPhenomic (TRIP) Nantes facility ( http://www.tgr.nantes.inserm.fr/ ). The meeting was supported by private companies (SONIDEL, Scionics computer innovation, New England Biolabs, MERCK, genOway, Journal Disease Models and Mechanisms) and by public institutions (International Society for Transgenic Technology, University of Nantes, INSERM UMR 1064, SFR François Bonamy, CNRS, Région Pays de la Loire, Biogenouest, TEFOR infrastructure, ITUN, IHU-CESTI and DHU-Oncogeffe and Labex IGO). Around 100 participants, from France but also from different European countries, Japan and USA, attended the meeting.


Assuntos
Animais Geneticamente Modificados/genética , Técnicas de Transferência de Genes/tendências , Modelos Animais , Animais , Humanos
11.
J Vis Exp ; (126)2017 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-28829428

RESUMO

The main concern in transplantation is to achieve specific tolerance through induction of regulatory cells. The understanding of tolerance mechanisms requires reliable models. Here, we describe models of tolerance to cardiac allograft in rat, induced by blockade of costimulation signals or by upregulation of immunoregulatory molecules through gene transfer. Each of these models allowed in vivo generation of regulatory cells such as regulatory T cells (Tregs), regulatory B cells (Bregs) or regulatory myeloid cells (RegMCs). In this manuscript, we describe two complementary protocols that have been used to identify and define in vitro and in vivo regulatory cell activity to determine their responsibility in tolerance induction and maintenance. First, an in vitro suppressive assay allowed rapid identification of cells with suppressive capacity on effector immune responses in a dose dependent manner, and can be used for further analysis such as cytokine measurement or cytotoxicity. Second, the adoptive transfer of cells from a tolerant treated recipient to a newly irradiated grafted recipient, highlighted the tolerogenic properties of these cells in controlling graft directed immune responses and/or converting new regulatory cells (termed infectious tolerance). These methods are not restricted to cells with known phenotypic markers and can be extended to any cell population. Furthermore, donor directed allospecificity of regulatory cells (an important goal in the field) can be assessed by using third party donor cells or graft either in vitro or in vivo. Finally, to determine the specific tolerogenic capacity of these regulatory cells, we provide protocols to assess the humoral anti-donor antibody responses and the capacity of the recipient to develop humoral responses against new or former known antigens. The models of tolerance described can be used to further characterize regulatory cells, to identify new biomarkers, and immunoregulatory molecules, and are adaptable to other transplantation models or autoimmune diseases in rodent or human.


Assuntos
Transferência Adotiva/métodos , Linfócitos B/imunologia , Tolerância Imunológica/imunologia , Células Mieloides/imunologia , Linfócitos T Reguladores/imunologia , Animais , Técnicas de Cocultura , Transplante de Coração/métodos , Humanos , Imunidade Humoral , Ratos , Transplantados , Transplante Homólogo/métodos
12.
Sci Rep ; 6: 31455, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530248

RESUMO

BAC transgenic mammalian systems offer an important platform for recapitulating human gene expression and disease modeling. While the larger body mass, and greater genetic and physiologic similarity to humans render rats well suited for reproducing human immune diseases and evaluating therapeutic strategies, difficulties of generating BAC transgenic rats have hindered progress. Thus, an efficient method for BAC transgenesis in rats would be valuable. Immunodeficient mice carrying a human SIRPA transgene have previously been shown to support improved human cell hematopoiesis. Here, we have generated for the first time, human SIRPA BAC transgenic rats, for which the gene is faithfully expressed, functionally active, and germline transmissible. To do this, human SIRPA BAC was modified with elements to work in coordination with genome engineering technologies-piggyBac, CRISPR/Cas9 or TALEN. Our findings show that piggyBac transposition is a more efficient approach than the classical BAC transgenesis, resulting in complete BAC integration with predictable end sequences, thereby permitting precise assessment of the integration site. Neither CRISPR/Cas9 nor TALEN increased BAC transgenesis. Therefore, an efficient generation of human SIRPA transgenic rats using piggyBac opens opportunities for expansion of humanized transgenic rat models in the future to advance biomedical research and therapeutic applications.


Assuntos
Antígenos de Diferenciação , Sistemas CRISPR-Cas , Cromossomos Artificiais Bacterianos/genética , Receptores Imunológicos , Transgenes , Zigoto , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Ratos Transgênicos , Receptores Imunológicos/biossíntese , Receptores Imunológicos/genética
13.
J Genet Genomics ; 43(5): 341-8, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27209567

RESUMO

The recent emergence and application of engineered endonucleases have led to the development of genome editing tools capable of rapidly implementing various targeted genome editions in a wide range of species. Moreover, these novel tools have become easier to use and have resulted in a great increase of applications. Whilst gene knockout (KO) or knockin (KI) animal models are relatively easy to achieve, there is a bottleneck in the detection and analysis of these mutations. Although several methods exist to detect these targeted mutations, we developed a heteroduplex mobility assay on an automated microfluidic capillary electrophoresis system named HMA-CE in order to accelerate the genotyping process. The HMA-CE method uses a simple PCR amplification of genomic DNA (gDNA) followed by an automated capillary electrophoresis step which reveals a heteroduplexes (HD) signature for each mutation. This allows efficient discrimination of wild-type and genome-edited animals down to the single base pair level.


Assuntos
Análise Custo-Benefício , Eletroforese Capilar/instrumentação , Edição de Genes , Técnicas de Genotipagem/economia , Dispositivos Lab-On-A-Chip , Animais , Eletroforese Capilar/economia , Técnicas de Genotipagem/instrumentação , Mutação , Ratos , Fatores de Tempo
14.
Methods Mol Biol ; 1338: 245-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26443226

RESUMO

The rat is an important animal model to understand gene function and model human diseases. Since recent years, the development of gene-specific nucleases has become important for generating new rat models of human diseases, to analyze the role of genes and to generate human antibodies. Transcription activator-like (TALE) nucleases efficiently create gene-specific knockout rats and lead to the possibility of gene targeting by homology-directed recombination (HDR) and generating knock-in rats. We describe a detailed protocol for generating knockout and knock-in rats via microinjection of TALE nucleases into fertilized eggs. This technology is an efficient, cost- and time-effective method for creating new rat models.


Assuntos
Animais Geneticamente Modificados/genética , Endonucleases/genética , Técnicas de Inativação de Genes/métodos , Animais , Genoma , Recombinação Homóloga/genética , Humanos , RNA Mensageiro/genética , Ratos , Transativadores/genética
15.
Sci Rep ; 5: 14410, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26442875

RESUMO

The generation of genetically-modified organisms has been revolutionized by the development of new genome editing technologies based on the use of gene-specific nucleases, such as meganucleases, ZFNs, TALENs and CRISPRs-Cas9 systems. The most rapid and cost-effective way to generate genetically-modified animals is by microinjection of the nucleic acids encoding gene-specific nucleases into zygotes. However, the efficiency of the procedure can still be improved. In this work we aim to increase the efficiency of CRISPRs-Cas9 and TALENs homology-directed repair by using TALENs and Cas9 proteins, instead of mRNA, microinjected into rat and mouse zygotes along with long or short donor DNAs. We observed that Cas9 protein was more efficient at homology-directed repair than mRNA, while TALEN protein was less efficient than mRNA at inducing homology-directed repair. Our results indicate that the use of Cas9 protein could represent a simple and practical methodological alternative to Cas9 mRNA in the generation of genetically-modified rats and mice as well as probably some other mammals.


Assuntos
Sistemas CRISPR-Cas/genética , Engenharia de Proteínas , Reparo de DNA por Recombinação/genética , Zigoto/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Ratos , Ratos Sprague-Dawley
16.
J Immunol ; 195(10): 5035-44, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26432892

RESUMO

Emerging knowledge regarding B cells in organ transplantation has demonstrated that these cells can no longer be taken as mere generators of deleterious Abs but can also act as beneficial players. We previously demonstrated in a rat model of cardiac allograft tolerance induced by short-term immunosuppression an accumulation in the blood of B cells overexpressing inhibitory molecules, a phenotype also observed in the blood of patients that spontaneously develop graft tolerance. In this study, we demonstrated the presence in the spleen of regulatory B cells enriched in the CD24(int)CD38(+)CD27(+)IgD(-)IgM(+/low) subpopulation, which are able to transfer donor-specific tolerance via IL-10 and TGF-ß1-dependent mechanisms and to suppress in vitro TNF-α secretion. Following anti-CD40 stimulation, IgD(-)IgM(+/low) B cells were blocked in their plasma cell differentiation pathway, maintained high expression of the inhibitory molecules CD23 and Bank1, and upregulated Granzyme B and Irf4, two molecules described as highly expressed by regulatory B cells. Interestingly, these B cells recognized specifically a dominant donor Ag, suggesting restricted specificity that could lead to a particular B cell response. Regulatory B cells were not required for induction of tolerance and appeared following Foxp3(+)CD4(+)CD25(+) regulatory T cells, suggesting cooperation with regulatory T cells for their expansion. Nevertheless, following transfer to new recipients, these B cells migrated to the allograft, kept their regulatory profile, and promoted local accumulation of Foxp3(+)CD4(+)CD25(+) regulatory T cells. Mechanisms of regulatory B cells and their cell therapy potential are important to decipher in experimental models to pave the way for future developments in the clinic.


Assuntos
Linfócitos B Reguladores/imunologia , Antígenos CD40/imunologia , Granzimas/imunologia , Transplante de Coração , Plasmócitos/imunologia , Transdução de Sinais/imunologia , Tolerância ao Transplante , Aloenxertos , Animais , Antígenos CD/imunologia , Citocinas/imunologia , Isoantígenos/imunologia , Masculino , Ratos , Linfócitos T Reguladores/imunologia
18.
J Clin Invest ; 125(10): 3952-64, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26389674

RESUMO

Cytokines and metabolic pathway-controlling enzymes regulate immune responses and have potential as powerful tools to mediate immune tolerance. Blockade of the interaction between CD40 and CD40L induces long-term cardiac allograft survival in rats through a CD8+CD45RClo Treg potentiation. Here, we have shown that the cytokine IL-34, the immunoregulatory properties of which have not been previously studied in transplantation or T cell biology, is expressed by rodent CD8+CD45RClo Tregs and human FOXP3+CD45RCloCD8+ and CD4+ Tregs. IL-34 was involved in the suppressive function of both CD8+ and CD4+ Tregs and markedly inhibited alloreactive immune responses. Additionally, in a rat cardiac allograft model, IL-34 potently induced transplant tolerance that was associated with a total inhibition of alloantibody production. Treatment of rats with IL-34 promoted allograft tolerance that was mediated by induction of CD8+ and CD4+ Tregs. Moreover, these Tregs were capable of serial tolerance induction through modulation of macrophages that migrate early to the graft. Finally, we demonstrated that human macrophages cultured in the presence of IL-34 greatly expanded CD8+ and CD4+ FOXP3+ Tregs, with a superior suppressive potential of antidonor immune responses compared with non-IL-34-expanded Tregs. In conclusion, we reveal that IL-34 serves as a suppressive Treg-specific cytokine and as a tolerogenic cytokine that efficiently inhibits alloreactive immune responses and mediates transplant tolerance.


Assuntos
Interleucinas/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante , Transferência Adotiva , Aloenxertos/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Dependovirus/genética , Fatores de Transcrição Forkhead/análise , Vetores Genéticos , Células HEK293 , Transplante de Coração , Humanos , Interleucinas/biossíntese , Interleucinas/genética , Interleucinas/farmacologia , Antígenos Comuns de Leucócito/análise , Ativação Linfocitária , Fator Estimulador de Colônias de Macrófagos/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , RNA Mensageiro/biossíntese , Ratos , Ratos Endogâmicos Lew , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Proteínas Recombinantes de Fusão/genética , Análise Serial de Tecidos , Transdução Genética
19.
Genome Res ; 24(8): 1371-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24989021

RESUMO

The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner.


Assuntos
Marcação de Genes , Engenharia Genética , Animais , Sequência de Bases , Células Cultivadas , Enzimas de Restrição do DNA/biossíntese , Enzimas de Restrição do DNA/genética , Feminino , Hipoxantina Fosforribosiltransferase/genética , Masculino , Microinjeções , Ratos Sprague-Dawley , Ratos Transgênicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Reparo de DNA por Recombinação , Zigoto
20.
Methods ; 69(1): 102-7, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24583114

RESUMO

The rat is a model of choice to understanding gene function and modeling human diseases. Since recent years, successful engineering technologies using gene-specific nucleases have been developed to gene edit the genome of different species, including the rat. This development has become important for the creation of new rat animals models of human diseases, analyze the role of genes and express recombinant proteins. Transcription activator-like (TALE) nucleases are designed nucleases consist of a DNA binding domain fused to a nuclease domain capable of cleaving the targeted DNA. We describe a detailed protocol for generating knockout rats via microinjection of TALE nucleases into fertilized eggs. This technology is an efficient, cost- and time-effective method for creating new rat models.


Assuntos
Técnicas de Inativação de Genes , Mutagênese Sítio-Dirigida/métodos , Animais , Reparo do DNA por Junção de Extremidades , Desoxirribonucleases/química , Desoxirribonucleases/genética , Transferência Embrionária , Embrião de Mamíferos , Feminino , Recombinação Homóloga , Microinjeções , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...